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bstract

Dual energy X-ray imaging technique is an alternative to simple transmission X-ray imaging. The former has the ability to reveal the internal
ensity changes of a scanned object by exploiting differences in how the scanned material interacts with X-rays at different energies. The feasibility
f dual energy X-ray image analysis to classify vitreousness in durum wheat was assessed at 12, 14 and 16% moisture content (m.c.). Algorithms
ere developed for the logarithmic subtraction of images and for extraction of features. Histogram groups and total gray values were extracted

rom the dual energy subtracted images. Statistical and neural network classifiers were used for identifying vitreous and non-vitreous kernels from

he sample images. Neural network classifiers correctly classified vitreous and non-vitreous kernels with 93% accuracy. The statistical classifiers
rovided 89% accuracy for vitreous and non-vitreous kernels. The over all classification accuracy for differentiating vitreous and non-vitreous
ernels is higher using dual energy X-ray imaging than the simple transmission X-ray imaging.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Vitreousness is a key quality parameter used for classify-
ng durum wheat. Vitreous durum wheat kernels are glassy and
ranslucent in appearance while non-vitreous kernels contain

starchy or mottled appearance. There are strict tolerances
or the number of non-vitreous kernels allowed into durum
rades. Canada imposes 80% or more hard vitreous kernels
or Grade 1 Canada Western Amber Durum wheat class for
xport (CGC, 2005). A quality conscious market requires guar-
nteeing minimum non-vitreous levels for each shipment. If the
rain delivered has more than the specified limit of non-vitreous
ernels then the grain may be rejected or price discounted.

Machine vision is one of the most promising technologies

o contribute to the accuracy, consistency and objectivity of
rain quality inspection. Researchers have used transmitted light
mages (Symons et al., 2003), transmitted and reflected light
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mages (Xie et al., 2004; Wang et al., 2005) and near infrared
pectral images (Dowell, 2000) for classifying vitreousness in
urum wheat.

X-ray techniques are gaining momentum and becoming an
lternative to other imaging techniques. Because of low radiation
nd the ability to reveal the internal density changes, soft X-rays
re suitable to be used for agricultural product inspection. When
n X-ray beam passes through the matter (sample), it undergoes
ttenuation. Due to attenuation, the intensity of the X-ray energy
ecreases gradually by absorption and scattering. Absorption
efers to the case in which an incident X-ray photon gives up all
f its energy. Scattering refers to those X-ray photons that have
ndergone a change in direction after interaction with atoms of
atter. Other photons which are neither absorbed nor scattered,

imply pass through the matter and can be detected. This process
s known as transmission X-ray imaging (Curry et al., 1990).

The interaction of X-rays with a homogeneous material
Dyson, 1990) can be described as:
(E) = I0(E)e−μ(E)x (1)

here I0(E) is incident beam intensity (mA), I(E) the transmit-
ed beam intensity (mA), μ(E) the linear attenuation coefficient
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f the material, x the distance traveled by X-rays in the material
mm) and E is the X-ray photon energy (kV). The transmit-
ed X-ray beam intensity decreases with an increase in material
hickness or density or both.

A soft X-ray system can detect internal insect infestations
Karunakaran et al., 2004) and can detect sprouted kernels
Neethirajan et al., 2006a), thus provides an opportunity to
evelop a single system for multiple tasks in the grain industry.
n addition, when grain is flowing on a belt under real time con-
itions, the X-rays can be used to measure grain depth because
f differences in the absorption of X-rays. In a recent study,
eethirajan et al. (2006b) have demonstrated that vitreous ker-
els could be classified using soft X-rays with 82% accuracy at
6% m.c.

An alternative technique to simple transmission X-ray imag-
ng is dual energy X-ray imaging. A small contrast in a X-ray
ransmitted image can be enhanced by a suitable selection of two
-ray photon energies (Zwiggelaar et al., 1997). Dual energy
-ray imaging has been successfully used to identify calculi in
idneys (Nedavnii and Osipov, 2001), to detect glass contamina-
ion in horticultural peat (Ayelaw et al., 2004); to predict carcass
omposition of pig genetic lines (Marcoux et al., 2005); for mea-
uring soft-tissue composition in small subjects (Koo, 2000); for
fficient detection and classification of inclusions in an object
ith fluctuating parameters (Nedavnii and Osipov, 2005).
The density of the vitreous kernels is higher than the non-

itreous kernels. Non-vitreous kernels are starchy and have
roader distribution of densities, while vitreous kernels are hard
nd have narrower distribution of densities (Dobraszczyk et al.,
002). The hypothesis of this study is that by employing the
ual energy X-ray principle, the vitreous kernels can be differ-
ntiated from the non-vitreous kernels with higher classification
ccuracy than simple transmission X-ray imaging.

The objectives of this study are:

1) to determine the potential of dual energy X-ray images for
identifying the vitreous kernels in durum wheat and

2) to determine the classification percentages of the vitreous
and non-vitreous kernels using artificial neural networks
and statistical classifiers based on features derived from the
subtracted X-ray images.

. Materials and methods

.1. Samples

Durum wheat samples (Triticum turgidum L.) collected from
hunder Bay, Canada, conditioned to 12, 14 and 16% moisture
ontent were used in this study. Kernels were manually separated
nto vitreous and non-vitreous sets based on visual assessment.

total of 1800 kernels (300 in each set) were scanned using a
oft X-ray imaging system. X-ray images of wheat kernels were
cquired using a Lixi fluoroscope that has 62.5 �m resolution

etection screen (Model: LX-85708, Lixi Inc., Downers Grove,
L). Preliminary experiments were done to select the higher and
ower X-ray energy levels to enhance the image contrast between
itreous and non-vitreous kernels. The spatial resolution of the
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mages was considered in selecting the settings for high and low-
nergy X-rays. The two settings used for high and low-energy
-rays were: 13.5 kV, 185 �A and 26 kV, 11 �A. The wheat
ernels were placed manually, crease down, on saran wrap on
he sample platform and individual kernels were X-rayed at both
nergies. A total of 3600 images were obtained. The scanned X-
ay images of wheat kernels were digitized into 8-bit gray scale
mages at a resolution of 60 pixels/mm.

.2. Image analysis and feature extraction

Image subtraction is a common image processing method
nd has been used in many areas of machine vision to enhance
mall changes between equivalent pairs of images (Lehmann et
l., 1997; Bromiley et al., 2002).

We developed algorithms in MATLAB (Version 7.1, The
athworks Inc., Natick, MA) to subtract the images of the

ame kernels scanned at high and low-energy levels. To cre-
te a dual energy image, weighted subtraction of the logarithm
f the low-energy image from that of the high-energy image was
erformed. Image subtraction was applied on both the vitreous
nd non-vitreous images.

The subtracted dual energy images were used for feature
xtraction using the image processing algorithm developed for
his study. The normalized histograms were obtained for each
ernel image and were grouped into 50 bins (Karunakaran et al.,
004). The other features extracted were: kernel area (� pixels),
otal gray value (� gray values in kernel), mean gray value (�
ray values/� pixels), inverted gray value (standard white to
lack mapping), and standard deviation of the gray levels. A
otal of 55 image features were extracted from both vitreous
nd non-vitreous kernels at all moisture contents and used for
lassification.

.3. Classification

The dual energy X-ray images were grouped into vitreous
nd non-vitreous sets for classification purposes. The extracted
5 image features were reduced to 17 features using STEPDISC
unction (SAS, 2000). The Wilk’s lambda (0.25) and associated
verage-squared canonical correlation were used as the criteria
f significance. The linear discriminant classifier using para-
etric method was used with the DISCRIM procedure (SAS,

000). The discriminant analysis was used to determine the
lassification accuracy for the two sets. Classification accuracy
s the percentage of kernels correctly identified as belonging
o a specific class. Classification accuracies were determined
y randomly selecting the training and testing sets three times.
hree-fourth of the sample was used as training sets and the

emaining one-fourth as the independent test sets and the aver-
ge of the three trials was calculated as the mean classification
ccuracy.

Jayas et al. (2000) have indicated that four-layer back prop-

gation neural network (BPNN) suits the best for the grain
lassification applications. The classification accuracies were
lso determined using a four-layer BPNN. Neural network soft-
are package (Neuroshell 2, Version 4.0, Ward Systems Group,
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classifier correctly identified 93% of the vitreous kernels and
non-vitreous kernels at all moisture content levels. The moisture
content had no significant effect (p > 0.05) on the classification
accuracy of both the vitreous and non-vitreous kernels. The clas-
S. Neethirajan et al. / Postharvest B

rederick, MD) was used for this purpose. Five random data sets
ere created by changing the random seed values from zero to
ve of the data extraction module of Neuroshell 2 software. The
ata set was grouped and a ratio of 60, 20 and 20% among train-
ng, test and validation sets was maintained. A four-layer neural
etwork model with default number of neurons in two hidden
ayers was used in this study. The network training was done on
he training set and the test set was used for testing the trained
etwork. The validation set which was neither used in training
or testing, was used for estimating the classification accuracies.
raining was stopped after 1000 epochs. Average classification
f five trials was calculated. The results of this classification
ere compared with the statistical classifier.

. Results and discussions

Fig. 1 shows the subtracted dual energy images of vitre-
us and non-vitreous kernels. Quantitative information in the
ual energy X-ray image does not depend on the image display
arameters. Therefore, there is no visually significant differ-
nce between the subtracted vitreous and non-vitreous images.
owever, the histograms of the dual energy subtracted images

how that the vitreous kernels have higher gray values than the
on-vitreous kernels (Fig. 2)(a and b).

Total inverted gray value and the total area of the kernel
mages were the two most significant features from STEPDISC
rocedure. The means of the total gray values and the inverted
ray values of the vitreous kernel class were significantly higher
han the non-vitreous kernel class. Because of the non-uniform
istribution of starch–protein matrix inside the non-vitreous ker-
els, the rate of absorption of X-rays may be less than that of
he vitreous kernels.

The mean area of the vitreous kernel images was
7,241 ± 3967 pixels while the mean area of the non-vitreous
ernel images was 57,215 ± 5251 at 12% moisture content. This
ndicates that the non-vitreous kernels are smaller in area than
he vitreous kernels. The same trend was observed for both 14
nd 16% m.c. samples. Two different energy levels were applied
o take the X-ray image of the same kernel. One energy level may
e absorbed more by the soft component (starch) and the other
y the hard component (protein). The image features extracted
rom the subtracted images of vitreous and non-vitreous ker-
els have the quantification data of the photon energy absorbed

n the form of gray levels. The histogram values (90–140 gray
alue range (Fig. 2(a)) and total gray values, were greater for the
itreous class than for the non-vitreous class. The classification
ccuracies determined using 17 features by the linear-function

ig. 1. Logarithmic subtracted dual energy X-ray images of (a) vitreous and (b)
on-vitreous kernels.
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ig. 2. Inverted gray values of vitreous (a) and non-vitreous (b) durum wheat
ernels at 12% moisture content.

arametric statistical classifier and the BPNN are also shown in
able 1. Classification accuracies are higher using the BPNN

han the statistical classifier except for 14 and 16% m.c. vit-
eous and 12% m.c. non-vitreous kernels. The linear-function
arametric classifier correctly identified 89% of vitreous and
on-vitreous kernels at all moisture contents except 16% m.c.
itreous where classification accuracy was 92%. The BPNN
able 1
omparison of classification percentages of vitreous kernels in durum wheat
sing statistical and BPNN classifiers

ype Moisture
content (%)

Linear discriminant
and parametric
(PAR)*

Back propagation
neural network
(BPNN)*

itreous 12 89 ± 1.2a,u 93 ± 2.3a,v

14 90 ± 1a,u 91 ± 1.5a,u

16 92 ± 1.5b,u 94 ± 2.4a,u

12 90 ± 2.4a,u 94 ± 1.5a,u

on-vitreous 14 88 ± 3a,u 93 ± 1a,v

16 89 ± 2.3a,u 94 ± 1.5a,v

* Numbers followed the same superscript characters (a and b) in each column
nd (u and v) in each row are statistically similar (α = 0.05).
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nels using reflectance and transmittance image analysis. Cereal. Chem. 81,
84 S. Neethirajan et al. / Postharvest Bio

ification accuracies of vitreous and non-vitreous kernels at 16%
.c. using single energy scan (13.5 and 26 kV setting) by statis-

ical classifier were only 75 and 82%, respectively (Neethirajan
t al., 2006b). This study proves our hypothesis that dual energy
-ray imaging improves the classification accuracy over single

nergy transmission X-ray imaging.

. Conclusions

Neural network classifiers correctly classified vitreous and
on-vitreous kernels with 93% accuracy. The statistical clas-
ifiers provided 89% accuracy for vitreous and non-vitreous
ernels. The overall classification accuracy for differentiating
itreous and non-vitreous kernels is higher using dual energy X-
ay imaging than the simple transmission X-ray imaging. This
tudy shows that dual energy X-ray images have a great potential
or classifying vitreous kernels in durum wheat.
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