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Detection of sprouted wheat kernels using soft X-ray image analysis
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Abstract

Sprouted wheat kernels adversely affect bread and pasta making quality, thus lowering the grade and value to millers, bakers and
grain dealers. In this study, the potential of using soft X-ray system in detecting the sprouted wheat kernels was evaluated. Sprouted
kernels were produced by germinating seeds. Both the sprouted and healthy samples were X-rayed using a soft X-ray system. White
specks were observed in all the sprouted kernel X-ray images. Algorithms were written to extract 55 image features including gray level
modeling and histogram from the scanned images. Identification of sprouted and healthy kernels was determined using statistical and
neural network classifiers. A four-layer back propagation neural network model correctly classified 90% and 95% of the sprouted
and healthy kernels, respectively. Statistical classifier correctly identified 87% and 92% of the sprouted and healthy kernels, respectively.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Wheat is a commercial crop grown in over 120 countries
worldwide and the world production accounts for 624.4 Mt
(million tonnes) (FAO, 2006). An important quality trait
linked to wheat export is sprouted kernels. When a large
portion of kernels in a lot get sprouted, they are usually
fed to animals, thus leading to economic loss. Damp har-
vest conditions and unfavorable weather cause the wheat
kernels to sprout. Sprouting lowers test weight and flour
yield, lowering the grade and value to the miller. Sprouted
wheat kernels have adverse effects on bread quality because
of the starch degrading enzyme a-amylase (Kruger, 1994).

Sprout damage leads to sticky dough which causes han-
dling problems, coarse crumb structure and gummy crumb
(Moot & Every, 1990). Excessive levels of a-amylase in the
sprouted kernels impair the quality of the dough and the
final baked product because of its effect in reducing the
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viscosity of the dough (Rasper & Walker, 2000). Sprouted
wheat kernels affect the effective bread slicing (Dexter,
1993) and lower the number of loaves of bread obtained
from a given mass of flour (Tkachuk, Dexter, & Tipples,
1991). In semolina and pasta processing, sprouted kernels
increase semolina speck counts, reduce shelf life of dried
pasta and increase cooking loss (Dexter, Matsuo, & Kru-
ger, 1990; Matsuo, Dexter, & MacGregor, 1982).

The common methods of estimating sprouted wheat
kernels are visual assessment by inspectors and falling
number test. Visual estimation of sprout damage gives only
a rough indication and it is inconsistent and subjective in
nature. Falling number serves as a gauge for a-amylase
activity, but it is time consuming and depends on the
degree of ripening (Mares, 1993). Millers, bakers and other
grain buyers rely on the index of falling number before pur-
chasing the grain. The other methods of determining
sprouted kernels are measurement of amylograph viscosity
and chemical assays.

Electromagnetic waves with wavelengths ranging from 1
to 100 nm are called soft X-rays. The low penetration
power and ability to reveal the internal density changes
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make soft X-rays suitable to be used for agricultural prod-
ucts. The soft X-ray method is rapid and takes only a few
seconds (3–5 s) to produce an X-ray image. Wheat seeds
irradiated with soft X-rays do not change their stored
starch into sugar when exposed to short periods (Benedict
& Kersten, 1934). Soft X-rays do not affect seed germina-
tion or cause chromosome damage (Kamra, 1976). With
the advent of technology, the cost of X-ray systems is
decreasing. Researchers have demonstrated the application
of soft X-ray images in detecting infestations in wheat
(Fornal et al., 2006; Karunakaran, Jayas, & White,
2003), determining mass flow rate of grain (Arslan, Inanc,
Gray, & Colvin, 2000), classifying vitreousness in durum
wheat (Neethirajan, Karunakaran, Symons, & Jayas,
2006), assessing viability of seeds, and inspecting packed
fruits (Davies, 2000). Hence, the soft X-ray system can
potentially be employed at grain terminal elevators for
insect infestation detection and kernel hardness determina-
tion. Sprouted kernels are less dense than the healthy ker-
nels (Tkachuk et al., 1991). The hypothesis of our study is
that the difference in density between sprouted and healthy
kernels can be used in detection and classification of the
sprouted wheat kernels using the soft X-ray images.

The objectives of this study are:

(1) to determine the potential of soft X-ray images in
classifying sprouted and healthy wheat kernels, and

(2) to determine the classification percentages of
sprouted and healthy kernels from the soft X-ray
images using statistical and neural network classifiers.

2. Materials and methods

2.1. Sample preparation

Canada western red spring wheat (variety AC Barrie), a
widely grown wheat was selected for this study. A wheat
sample of 3 kg was surface-sterilized by soaking in a 2%
aqueous sodium hypochlorite solution for 15 min at
24 �C and rinsed with distilled water for about 20 min.
The sample was soaked overnight for about 14 h in excess
distilled water at 4 �C with one water change. The same
sample was again rinsed well with distilled water and was
spread on cellulose pads and germinated at 21 �C, 70% rel-
ative humidity. After 48 h, the samples were withdrawn
and frozen at �30 �C and then freeze dried for about
96 h. Roots and coleoptiles were removed after freeze dry-
ing. The freeze dried samples were stored at �5 �C and
were ready for scanning as sprouted sample. Another sam-
ple of 3 kg wheat was surface-sterilized and freeze dried
immediately and used as healthy sample.

2.2. Falling number test

Falling numbers were determined for sprouted and
healthy kernels using a falling number apparatus (Model
1500, Perten Instruments, Huddinge, Sweden). Standard
AACC method 56-81B (AACC, 2000) was followed in
determining the falling numbers. In the falling number
apparatus, the falling number is determined by the time
taken for a plunger to fall to the bottom of a precision bore
glass tube filled with heated paste of wheat meal and water.
The greater the sprout damage, the lower is the falling
number. The falling numbers determined from the
sprouted and healthy wheat samples were 62 and 272 s,
respectively.

2.3. Image acquisition

A total of 2000 wheat kernels (1000 sprouted and 1000
healthy), selected randomly from each sample, were
scanned using a soft X-ray imaging system. X-ray images
of wheat kernels were acquired using a Lixi fluoroscope
that has 62.5 lm resolution detection screen (Model: LX-
85708, Lixi Inc., Downers Grove, IL). The X-ray tube volt-
age and tube current used were 13.5 kV and 185 lA. The
wheat kernels were placed manually, crease down, on saran
wrap (sample platform) and single kernels were X-rayed at
a time. The scanned X-ray images of wheat kernels were
digitized into 8-bit gray scale images at a resolution of
60 pixels/mm.

2.4. Feature extraction

Algorithms were developed in MATLAB (version 7.1,
The Mathworks Inc., Natick, MA) to extract features from
the X-ray images of sprouted and healthy wheat kernels.
Thresholding procedure was used to remove the kernel
from the background. A total of 55 image features were
extracted and used for classification purpose. The normal-
ized histograms were obtained for each kernel images and
were grouped into 50 bins. The other features extracted
were: kernel area (

P
pixels), total gray value (

P
gray val-

ues in kernel), mean gray value (
P

gray values/
P

pixels),
inverted gray value (standard white to black mapping), and
standard deviation of the gray levels.

2.5. Classification

The extracted 55 image features were reduced to 17 fea-
tures using STEPDISC function (SAS, 2000). The Wilk’s
lambda (0.18) and the average-squared canonical correla-
tion were used as the criteria of significance. The data set
was then reduced to contain only 17 features. Linear dis-
criminant parametric (PAR) classifiers were trained using
the DISCRIM procedure (SAS, 2000). The discriminant
analysis was used to determine the classification accuracy
for the sprouted and healthy kernels. Classification accu-
racy is the percentage of kernels correctly identified as
belonging to a specific class. Classification accuracies were
determined by randomly selecting the training and testing
sets three times. Three-fourth of the imaged sprouted and
healthy kernels were used as training sets and the remain-



Fig. 1. X-ray images of (a) sprouted, (b) healthy wheat kernels (white
speck indicates ‘softened’ endosperm in the sprouted kernel).
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ing as the independent test sets. The average of the three
trials was calculated as the mean classification accuracy.

A four-layer Back Propagation Neural Network
(BPNN) suits best for grain classification applications
(Jayas, Paliwal, & Visen, 2000). The classification accura-
cies were also determined using a four-layer BPNN. A neu-
ral network software package (Neuroshell 2, version 4.0,
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Fig. 2. Normalized histograms of sprout
Ward Systems Group, Frederick, MD) was used for this
purpose. The results of this classification were compared
with the linear discriminant PAR classifier.
3. Results and discussion

Typical X-ray images of sprouted and healthy wheat
kernels are shown in Fig. 1. The degradation of starch by
a-amylase enzyme softens the kernel endosperm. This is
reflected as white specks or internal fissures in the endo-
sperm region of the sprouted kernel X-ray images but not
in the healthy kernel X-ray images.

The mean total gray values were significantly less
(P < 0.05) for sprouted wheat kernels than the healthy ker-
nels. This may be due to the less absorption of photon
energy in the sprouted kernels due to the breaking of starch
by a-amylase.
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Fig. 4. Comparison of classification percentages of sprouted wheat
kernels using statistical classifiers and BPNN. (Par: Parametric method;
BPNN: Back propagation neural network method.)
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Fig. 2 shows the gray level distribution from X-ray
images of sprouted and healthy wheat kernels. Gray values
in the histogram of sprouted kernel have numerically lower
values between 100 and 150 gray values than healthy ker-
nels. The brighter regions (white specks) in the sprouted
wheat kernels cause this low number of lower gray values.

The mean histogram group values of 1000 sprouted and
1000 healthy wheat kernels are shown in Fig. 3. The histo-
gram group values from 100 to 165 of healthy kernels were
significantly higher than those of the sprouted kernels
(P < 0.05). Since the endosperm is softened by the a-amy-
lase enzyme, the X-rays passed through the sprouted ker-
nels with less attenuation than the healthy kernels
creating brighter regions with lower gray values in the
sprouted kernel images. The 1000 kernel mass measured
for sprouted and healthy kernels were 46.01 g and
48.67 g, respectively. Mean lower mass of sprouted kernels
results in lower absorption of photon energy leading to
lower gray values.

The histogram features were combined with the gray
value features to determine the classification percentages
of sprouted and healthy wheat kernels. Total gray value,
total area, total inverted gray values were the most signifi-
cant contributing features by the STEPDISC function
(SAS, 2000). The classification accuracies determined using
17 features by the linear-function parametric statistical
classifier and the four-layer BPNN of the sprouted and
healthy kernels samples are shown in Fig. 4. Neural net-
work classifier gives higher classification than the statistical
classifier. A classification accuracy of 90% can be achieved
for sprouted kernels using the four-layer BPNN model.

Linear discriminant classification is based on the rela-
tionship between categorical parameter and a set of inter-
related parameters. In our study, we have two groups (1)
sprouted kernel class and (2) healthy kernel class. Classifi-
cation of a particular wheat kernel to find out which class it
belongs is based on comparing the distance (Mahalanobis
distance) of the particular kernel of unknown origin from
the mean of the respective classes (McLachlan, 1992).
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Fig. 3. Histogram groups of Canada western red spring sprouted and
healthy wheat kernels.
In this study, the same selected features were used for
both statistical and neural network classification. The goal
of a NN classifier is to design a pattern classification system
to find a model which best matches the training examples
and generalizes well in the actual classification task.
Four-layer multi layer perceptron is capable of forming
an arbitrarily close approximation to any nonlinear map-
ping given sufficient neurons in the hidden layers (Zhang,
Verma, & Kumar, 2004). The NN classifier was superior
in classifying the kernels than the statistical classifier
because of the neural network characteristics. Neural net-
works are able to learn from existing examples, making
the classification adaptive and objective (Bishop, 1995;
Kanellopoulos, Wilkinson, Roli, & Austin, 1997). Unlike
statistical classifiers, NN classifiers do not make any
assumption about distribution of data. Complex inter-cor-
relation of features is best predicted by neural network
classifiers by the learning epochs and hidden nodes. Neural
network methods are more robust than statistical classifiers
with respect to parameter tuning.

4. Conclusions

In this study, we have demonstrated the potential of soft
X-ray images in detecting sprouted wheat kernels. Algo-
rithms were written in MATLAB for feature extraction
and quantification of gray values from the X-ray images.
Statistical and artificial neural network classifiers were used
for classifying the sprouted and healthy kernels. The
BPNN classifier correctly classified 90% and 95% of
sprouted and healthy kernels, respectively. The linear-func-
tion parametric classifier correctly identified 87% and 92%
of sprouted and healthy kernels, respectively. The effect of
orientation of kernels on classification during imaging
needs to be addressed in future research. Further study
using bulk samples in a line-scan X-ray imaging system is
required before implementing the soft X-ray system for
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detecting sprouted kernels in the grain industry. Soft X-ray
system can be used as an objective and rapid method, elim-
inating the subjective and time consuming classification of
sprouted kernels by grain inspectors.
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